MATH 405 – Introduction to Iteration and Chaos

Course Description from Bulletin: Functional iteration and orbits, periodic points and Sharkovsky's cycle theorem, chaos and dynamical systems of dimensions one and two. Julia sets and fractals, physical implications.

Enrollment: Undergraduate and graduate students in mathematics, science, and engineering.

Textbook(s): R.L. Devaney, A First Course in Chaotic Dynamical Systems

Supplements: Notes and recent journal articles

Prerequisites: Math 251,252, and one of the following: Math 332, 333, or consent of the instructor.

- 3. Students will generate and analyze orbit diagrams of key families of functions.
- 4. Students will understand modern definitions of chaotic (and regular) behavior.
- 5. Students will apply the central ideas to a variety of theoretical and practical questions.

Lecture schedule: 3 50 minute lectures per week

Course Outline:		Hours
1.	Iteration of real functions; discrete dynamical systems	5
2.	Analysis of fixed and periodic points	7
3.	One-parameter families of functions: orbit diagrams of the quadratic,	
	Tent, and related families, computer explorations.	12
4.	The Li-Yorke and Sharkovsky theorems	4
5.	Chaotic systems: criteria and examples, cantor sets, conjugacy	
	Symbolic dynamiTdrihg2e2amiTdrihg27	

Assessment: Problem sets 50-70 % Projects 30-50 %

Syllabus prepared by: Jerry Frank

Date: March 2, 2006